@stdlib/nlp-lda
TypeScript icon, indicating that this package has built-in type declarations

0.2.1 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

LDA

NPM version Build Status Coverage Status

Latent Dirichlet Allocation via collapsed Gibbs sampling.

Installation

npm install @stdlib/nlp-lda

Usage

var lda = require( '@stdlib/nlp-lda' );

lda( docs, K[, options] )

Latent Dirichlet Allocation via collapsed Gibbs sampling. To create a model, call the lda function by passing it an array of strings and the number of topics K that should be identified.

var model;
var docs;

docs = [
    'I loved you first',
    'For one is both and both are one in love',
    'You never see my pain',
    'My love is such that rivers cannot quench',
    'See a lot of pain, a lot of tears'
];

model = lda( docs, 2 );
// returns {}

After initialization, model parameters are estimated by calling the .fit() method, which performs collapsed Gibbs sampling.

The model object contains the following methods:

model.fit( iter, burnin, thin )

model.fit( 1000, 100, 10 );

The iter parameter denotes the number of sampling iterations. While a common choice, one thousand iterations might not always be appropriate. Empirical diagnostics can be used to assess whether the constructed Markov Chain has converged. burnin denotes the number of estimates that are thrown away at the beginning, whereas thin controls the number of estimates discarded in-between iterations.

model.getTerms( k[, no = 10] )

Returns the no terms with the highest probabilities for chosen topic k.

var words = model.getTerms( 0, 3 );
/* returns
    [
        { 'word': 'both', 'prob': 0.06315008476532499 },
        { 'word': 'pain', 'prob': 0.05515729517235543 },
        { 'word': 'one', 'prob': 0.05486669737616135 }
    ]
*/

Examples

var sotu = require( '@stdlib/datasets-sotu' );
var roundn = require( '@stdlib/math-base-special-roundn' );
var stopwords = require( '@stdlib/datasets-stopwords-en' );
var lowercase = require( '@stdlib/string-lowercase' );
var lda = require( '@stdlib/nlp-lda' );

var speeches;
var words;
var terms;
var model;
var str;
var i;
var j;

words = stopwords();
for ( i = 0; i < words.length; i++ ) {
    words[ i ] = new RegExp( '\\b'+words[ i ]+'\\b', 'gi' );
}

speeches = sotu({
    'range': [ 1930, 2010 ]
});
for ( i = 0; i < speeches.length; i++ ) {
    str = lowercase( speeches[ i ].text );
    for ( j = 0; j < words.length; j++ ) {
        str = str.replace( words[ j ], '' );
    }
    speeches[ i ] = str;
}

model = lda( speeches, 3 );

model.fit( 1000, 100, 10 );

for ( i = 0; i <= 80; i++ ) {
    str = 'Year: ' + (1930+i) + '\t';
    str += 'Topic 1: ' + roundn( model.avgTheta.get( i, 0 ), -3 ) + '\t';
    str += 'Topic 2: ' + roundn( model.avgTheta.get( i, 1 ), -3 ) + '\t';
    str += 'Topic 3: ' + roundn( model.avgTheta.get( i, 2 ), -3 );
    console.log( str );
}

terms = model.getTerms( 0, 20 );
for ( i = 0; i < terms.length; i++ ) {
    terms[ i ] = terms[ i ].word;
}
console.log( 'Words most associated with first topic:\n ' + terms.join( ', ' ) );

terms = model.getTerms( 1, 20 );
for ( i = 0; i < terms.length; i++ ) {
    terms[ i ] = terms[ i ].word;
}
console.log( 'Words most associated with second topic:\n ' + terms.join( ', ' ) );

terms = model.getTerms( 2, 20 );
for ( i = 0; i < terms.length; i++ ) {
    terms[ i ] = terms[ i ].word;
}
console.log( 'Words most associated with third topic:\n ' + terms.join( ', ' ) );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/nlp-lda

Homepage

stdlib.io

Weekly Downloads

28

Version

0.2.1

License

Apache-2.0

Unpacked Size

82.3 kB

Total Files

18

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser