Complex

Do calculations with Complex numbers

npm install Complex
12 downloads in the last week
15 downloads in the last month

Complex

Complex is a additional Type to deal with Complex Numbers in JavaScript. It provides several methods to add, multiply numbers as well as calculate the magnitude and angle in the complex plane.

Screenshot

Node

You can get this package with NPM:

npm install Complex
var Complex = require('Complex');
console.log(new Complex(3, 4).abs()); // 5

Browser

Complex can be built for the browser with wrapup or other tools that can generate browser JS from Node packages.

Testing

Testing is done with Mocha and Expect.js:

# install dependencies
npm install
# run the tests in node
./node_modules/.bin/mocha test/Complex.js

or testing in the browser:

# install dependencies
npm install
# run a small node server
node ./test/server.js
# run tests
google-chrome http://localhost:3000

API Documentation

Complex constructor:

var z = new Complex(real im);

Arguments:

  1. real (number) the real part of the number
  2. im (number) the imaginary part of the number

Function: Complex.from

A in line function like Number.from.

var z = Complex.from(real[, im]);

Arguments:

  1. real (number) the real part of the number
  2. im (number, optional) the imaginary part of the number

Or

  1. real (string) a string representation of the number, for example 1+4i

Examples:

var z = Complex.from(2, 4);
var z = Complex.from(5);
var z = Complex.from('2+5i');

Function: Complex.fromPolar

Creates a complex instance from a polar representation: r*e^(phi*i) = r (cos(phi) + i sin(phi))

var z = Complex.fromPolar(r, phi);

Arguments:

  1. r (number) the radius/magnitude of the number
  2. phi (number) the angle/phase of the number

Constant: Complex.i

A instance of the imaginary unit i

var i = Complex.i;

Constant: Complex.one

A instance for the real number 1

var one = Complex.one;

Method: fromRect

Sets the real and imaginary properties a and b from a + bi

myComplex.fromRect(real, im);

Arguments:

  1. real (number) the real part of the number
  2. im (number) the imaginary part of the number

Method: fromPolar

Sets the a and b in a + bi from a polar representation.

myComplex.fromPolar(r, phi);

Arguments:

  1. r (number) the radius/magnitude of the number
  2. phi (number) the angle/phase of the number

Method: toPrecision

Sets the precision of the numbers. Similar to Number.prototype.toPrecision. Useful befor printing the number with the toString method.

myComplex.toPrecision(k);

Arguments:

  1. k (number) An integer specifying the number of significant digits

Method: toFixed

Formats a number using fixed-point notation. Similar to Number.prototype.toFixed. Useful before printing the number with the toString method.

myComplex.toFixed(k);

Arguments:

  1. k (number) The number of digits to appear after the decimal point; this may be a value between 0 and 20, inclusive, and implementations may optionally support a larger range of values. If this argument is omitted, it is treated as 0

Method: finalize

Finalizes the instance. The number will not change and any other method call will return a new instance. Very useful when a complex instance should stay constant. For example the Complex.i variable is a finalized instance.

myComplex.finalize();

Method: magnitude

Calculates the magnitude of the complex number

myComplex.magnitude();

Alias:

  • abs

Method: angle

Calculates the angle with respect to the real axis, in radians.

myComplex.angle();

Aliases

  • arg
  • phase

Method: conjugate

Calculates the conjugate of the complex number (multiplies the imaginary part with -1)

myComplex.conjugate();

Method: negate

Negates the number (multiplies both the real and imaginary part with -1)

myComplex.negate();

Method: multiply

Multiplies the number with a real or complex number

myComplex.multiply(z);

Arguments:

  1. z (number, complex) the number to multiply with

Alias:

  • mult

Method: divide

Divides the number by a real or complex number

myComplex.divide(z);

Arguments:

  1. z (number, complex) the number to divide by

Alias:

  • div

Method: add

Adds a real or complex number

myComplex.add(z);

Arguments:

  1. z (number, complex) the number to add

Method: subtract

Subtracts a real or complex number

myComplex.subtract(z);

Arguments:

  1. z (number, complex) the number to subtract

Alias:

  • sub

Method: pow

Returns the base to the exponent

myComplex.pow(z);

Arguments:

  1. z (number, complex) the exponent

Method: sqrt

Returns the square root

myComplex.sqrt();

Method: log

Returns the natural logarithm (base E)

myComplex.log([k]);

Arguments:

  1. k (number) the actual answer has a multiplicity (ln(z) = ln|z| + arg(z)) where arg(z) can return the same for different angles (every 2*pi), with this argument you can define which answer is required

Method: exp

Calculates the e^z where the base is E and the exponential the complex number.

myComplex.exp();

Method: sin

Calculates the sine of the complex number

myComplex.sin();

Method: cos

Calculates the cosine of the complex number

myComplex.cos();

Method: tan

Calculates the tangent of the complex number

myComplex.tan();

Method: sinh

Calculates the hyperbolic sine of the complex number

myComplex.sinh();

Method: cosh

Calculates the hyperbolic cosine of the complex number

myComplex.cosh();

Method: tanh

Calculates the hyperbolic tangent of the complex number

myComplex.tanh();

Method: clone

Returns a new Complex instance with the same real and imaginary properties

myComplex.clone();

Method: toString

Returns a string representation of the complex number

myComplex.toString();

Examples:

new Complex(1, 2).toString(); // 1+2i
new Complex(0, 1).toString(); // i
new Complex(4, 0).toString(); // 4
new Complex(1, 1).toString(); // 1+i
'my Complex Number is: ' + (new Complex(3, 5)); // 'my Complex Number is: 3+5i

Method: Equals

Checks if the real and imaginary components are equal to the passed in compelex components.

myComplex.equals(z);

Arguments:

  1. z (number, complex) the complex number to compare with

Examples:

new Complex(1, 4).equals(new Complex(1, 4)); // true
new Complex(1, 3).equals(new Complex(1, 3)); // false
npm loves you